
Tree Algorithms

Rishabh Dhiman

Algorithms and Coding Club
Indian Institute of Technology Delhi

6 December 2021

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 1 / 16



Distance Queries

Problem

Given a tree T , and two vertices r and s, find the distance between r and s.

1. Start a DFS at r .

2. Keep track of the current depth.

3. Return this as answer once you reach s.

int ans;
void dfs(int u, int depth, int p) {

if (u == s) {
ans = depth;

}
for (int v : g[u]) { // g[u] stores the neighbours of u

if (v == p)
continue;

dfs(v, depth + 1, u);
}

}
dfs(r, 0, r);

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 2 / 16



Distance Queries

Problem

Given a tree T , and two vertices r and s, find the distance between r and s.

1. Start a DFS at r .

2. Keep track of the current depth.

3. Return this as answer once you reach s.

int ans;
void dfs(int u, int depth, int p) {

if (u == s) {
ans = depth;

}
for (int v : g[u]) { // g[u] stores the neighbours of u

if (v == p)
continue;

dfs(v, depth + 1, u);
}

}
dfs(r, 0, r);

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 2 / 16



Distance Queries

Problem

Given a tree T , and two vertices r and s, find the distance between r and s.

1. Start a DFS at r .

2. Keep track of the current depth.

3. Return this as answer once you reach s.

int ans;
void dfs(int u, int depth, int p) {

if (u == s) {
ans = depth;

}
for (int v : g[u]) { // g[u] stores the neighbours of u

if (v == p)
continue;

dfs(v, depth + 1, u);
}

}
dfs(r, 0, r);

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 2 / 16



Distance Queries

Problem

Given a tree T rooted at r , answer Q queries. In a query, a vertex s is given, find the distance between r and s.

1. Start a DFS at r .

2. Keep track of the current depth.

3. Store this depth for each node.

4. Return this stored depth in each query.

int d[N];
void dfs(int u, int depth, int p) {

d[u] = depth;
for (int v : g[u]) {

if (v == p)
continue;

dfs(v, depth + 1, u);
}

}
dfs(r, 0, r);

for (int i = 0; i < q; ++i) {
int s; cin >> s;
cout << d[s] << '\n';

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 3 / 16



Distance Queries

Problem

Given a tree T rooted at r , answer Q queries. In a query, a vertex s is given, find the distance between r and s.

1. Start a DFS at r .

2. Keep track of the current depth.

3. Store this depth for each node.

4. Return this stored depth in each query.

int d[N];
void dfs(int u, int depth, int p) {

d[u] = depth;
for (int v : g[u]) {

if (v == p)
continue;

dfs(v, depth + 1, u);
}

}
dfs(r, 0, r);

for (int i = 0; i < q; ++i) {
int s; cin >> s;
cout << d[s] << '\n';

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 3 / 16



Distance Queries

Problem

Given a tree T rooted at r , answer Q queries. In a query, a vertex s is given, find the distance between r and s.

1. Start a DFS at r .

2. Keep track of the current depth.

3. Store this depth for each node.

4. Return this stored depth in each query.

int d[N];
void dfs(int u, int depth, int p) {

d[u] = depth;
for (int v : g[u]) {

if (v == p)
continue;

dfs(v, depth + 1, u);
}

}
dfs(r, 0, r);

for (int i = 0; i < q; ++i) {
int s; cin >> s;
cout << d[s] << '\n';

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 3 / 16



Distance Queries

Problem

Given a tree T , answer Q queries. In a query, vertices s and t are given, find the distance between s and t.

1. Arbitrarily root the tree at some vertex r .

2. Compute the distance from r as in the previous case.

3. Output d(r , s) + d(r , t)− 2d(r , lca(s, t)).

dfs(0, 0, 0);
for (int i = 0; i < q; ++i) {

int s, t; cin >> s >> t;
cout << d[s] + d[t] - 2 * d[lca(s, t)] << '\n';

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 4 / 16



Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021



Distance Queries

Problem

Given a tree T , answer Q queries. In a query, vertices s and t are given, find the distance between s and t.

1. Arbitrarily root the tree at some vertex r .

2. Compute the distance from r as in the previous case.

3. Output d(r , s) + d(r , t)− 2d(r , lca(s, t)).

dfs(0, 0, 0);
for (int i = 0; i < q; ++i) {

int s, t; cin >> s >> t;
cout << d[s] + d[t] - 2 * d[lca(s, t)] << '\n';

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 4 / 16



Distance Queries

Problem

Given a tree T , answer Q queries. In a query, vertices s and t are given, find the distance between s and t.

1. Arbitrarily root the tree at some vertex r .

2. Compute the distance from r as in the previous case.

3. Output d(r , s) + d(r , t)− 2d(r , lca(s, t)).

dfs(0, 0, 0);
for (int i = 0; i < q; ++i) {

int s, t; cin >> s >> t;
cout << d[s] + d[t] - 2 * d[lca(s, t)] << '\n';

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 4 / 16



Ancestor Queries

Problem

Given a tree rooted at r , and a vertex s, find the k-th ancestor of s.

1. Start at a DFS at r .

2. For each vertex store its parent.

3. Find the answer by finding the parent of the node k times.

int p[N];
void dfs(int u) {

for (int v : g[u]) {
if (v == p[u])

continue;
p[v] = u;
dfs(v);

}
}
p[r] = r;
dfs(r);

for (int i = 0; i < k; ++i) {
s = p[s];

}
cout << s;

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 5 / 16



Ancestor Queries

Problem

Given a tree rooted at r , and a vertex s, find the k-th ancestor of s.

1. Start at a DFS at r .

2. For each vertex store its parent.

3. Find the answer by finding the parent of the node k times.

int p[N];
void dfs(int u) {

for (int v : g[u]) {
if (v == p[u])

continue;
p[v] = u;
dfs(v);

}
}
p[r] = r;
dfs(r);

for (int i = 0; i < k; ++i) {
s = p[s];

}
cout << s;

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 5 / 16



Ancestor Queries

Problem

Given a tree rooted at r , and a vertex s, find the k-th ancestor of s.

1. Start at a DFS at r .

2. For each vertex store its parent.

3. Find the answer by finding the parent of the node k times.

int p[N];
void dfs(int u) {

for (int v : g[u]) {
if (v == p[u])

continue;
p[v] = u;
dfs(v);

}
}
p[r] = r;
dfs(r);

for (int i = 0; i < k; ++i) {
s = p[s];

}
cout << s;

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 5 / 16



Ancestor Queries

Problem

Given a tree rooted at r , answer Q queries. In each query, number m is given, find the 2m-th ancestor of all
vertices.

The parent relation is a function p : V → V . The query is to find p ◦ p ◦ p ◦ · · · ◦ p︸ ︷︷ ︸
2m times

= p2m .

Composition of functions is an associative binary operation. We can use binary exponentiation!

p2m = p2m−1

◦ p2m−1

.

int f[M][N]; // f[m] is the desired answer
p[r] = r; dfs(r);
for (int u = 0; u < n; ++u) {

f[0][u] = p[u];
}
for (int j = 0; j < M - 1; ++j) {

for (int u = 0; u < n; ++u) {
f[j + 1][u] = f[j][f[j][u]];

}
}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 6 / 16



Ancestor Queries

Problem

Given a tree rooted at r , answer Q queries. In each query, number m is given, find the 2m-th ancestor of all
vertices.

The parent relation is a function p : V → V . The query is to find p ◦ p ◦ p ◦ · · · ◦ p︸ ︷︷ ︸
2m times

= p2m .

Composition of functions is an associative binary operation.

We can use binary exponentiation!

p2m = p2m−1

◦ p2m−1

.

int f[M][N]; // f[m] is the desired answer
p[r] = r; dfs(r);
for (int u = 0; u < n; ++u) {

f[0][u] = p[u];
}
for (int j = 0; j < M - 1; ++j) {

for (int u = 0; u < n; ++u) {
f[j + 1][u] = f[j][f[j][u]];

}
}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 6 / 16



Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021



Ancestor Queries

Problem

Given a tree rooted at r , answer Q queries. In each query, number m is given, find the 2m-th ancestor of all
vertices.

The parent relation is a function p : V → V . The query is to find p ◦ p ◦ p ◦ · · · ◦ p︸ ︷︷ ︸
2m times

= p2m .

Composition of functions is an associative binary operation. We can use binary exponentiation!

p2m = p2m−1

◦ p2m−1

.

int f[M][N]; // f[m] is the desired answer
p[r] = r; dfs(r);
for (int u = 0; u < n; ++u) {

f[0][u] = p[u];
}
for (int j = 0; j < M - 1; ++j) {

for (int u = 0; u < n; ++u) {
f[j + 1][u] = f[j][f[j][u]];

}
}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 6 / 16



Ancestor Queries

Problem

Given a tree rooted at r , answer Q queries. In each query, number m is given, find the 2m-th ancestor of all
vertices.

The parent relation is a function p : V → V . The query is to find p ◦ p ◦ p ◦ · · · ◦ p︸ ︷︷ ︸
2m times

= p2m .

Composition of functions is an associative binary operation. We can use binary exponentiation!

p2m = p2m−1

◦ p2m−1

.

int f[M][N]; // f[m] is the desired answer
p[r] = r; dfs(r);
for (int u = 0; u < n; ++u) {

f[0][u] = p[u];
}
for (int j = 0; j < M - 1; ++j) {

for (int u = 0; u < n; ++u) {
f[j + 1][u] = f[j][f[j][u]];

}
}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 6 / 16



Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021



Ancestor Queries

Problem

Given a tree rooted at r , answer Q queries. In each query, a vertex s and a number k is given, find the k-th
ancestor of s.

Use binary exponentiation. Let k =
∑m−1

i=0 bi2
i ,

pk(s) = (pbm−12
m−1

◦ · · · ◦ pb22
2

◦ pb12
1

◦ pb02
0

)(s).

int f[M][N]; // compute it as in the previous case
for (int j = 0; j < M; ++j) {

if (k >> j & 1)
s = f[j][s];

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 7 / 16



Ancestor Queries

Problem

Given a tree rooted at r , answer Q queries. In each query, a vertex s and a number k is given, find the k-th
ancestor of s.

Use binary exponentiation. Let k =
∑m−1

i=0 bi2
i ,

pk(s) = (pbm−12
m−1

◦ · · · ◦ pb22
2

◦ pb12
1

◦ pb02
0

)(s).

int f[M][N]; // compute it as in the previous case
for (int j = 0; j < M; ++j) {

if (k >> j & 1)
s = f[j][s];

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 7 / 16



Ancestor Queries

Problem

Given a tree rooted at r , answer Q queries. In each query, a vertex s and a number k is given, find the k-th
ancestor of s.

Use binary exponentiation. Let k =
∑m−1

i=0 bi2
i ,

pk(s) = (pbm−12
m−1

◦ · · · ◦ pb22
2

◦ pb12
1

◦ pb02
0

)(s).

int f[M][N]; // compute it as in the previous case
for (int j = 0; j < M; ++j) {

if (k >> j & 1)
s = f[j][s];

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 7 / 16



Ancestor Queries

Problem (LCA)

Given a tree rooted at r , answer Q queries. In each query, vertices s and t are given, find their lowest common
ancestor.

1. Move up s or t such that they both are at the same depth.

2. Binary search to find the smallest k such that pk(s) = pk(t).

3. This pk(s) is the LCA.

int f[M][N], d[N]; // compute it as earlier
int ancestor(int s, int k); // returns the k-th ancestor of s
int lca(int s, int t) {

if (d[s] > d[t]) s = ancestor(s, d[s] - d[t]);
else t = ancestor(t, d[t] - d[s]);

int l = -1, r = n;
while (r - l > 1) {

int m = (l + r) / 2;
if (ancestor(s, m) == ancestor(t, m)) r = m;
else l = m;

}
return ancestor(s, r);

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 8 / 16



Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021



Ancestor Queries

Problem (LCA)

Given a tree rooted at r , answer Q queries. In each query, vertices s and t are given, find their lowest common
ancestor.

1. Move up s or t such that they both are at the same depth.

2. Binary search to find the smallest k such that pk(s) = pk(t).

3. This pk(s) is the LCA.

int f[M][N], d[N]; // compute it as earlier
int ancestor(int s, int k); // returns the k-th ancestor of s
int lca(int s, int t) {

if (d[s] > d[t]) s = ancestor(s, d[s] - d[t]);
else t = ancestor(t, d[t] - d[s]);

int l = -1, r = n;
while (r - l > 1) {

int m = (l + r) / 2;
if (ancestor(s, m) == ancestor(t, m)) r = m;
else l = m;

}
return ancestor(s, r);

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 8 / 16



Ancestor Queries

Problem (LCA)

Given a tree rooted at r , answer Q queries. In each query, vertices s and t are given, find their lowest common
ancestor.

1. Move up s or t such that they both are at the same depth.

2. Binary search to find the smallest k such that pk(s) = pk(t).

3. This pk(s) is the LCA.

int f[M][N], d[N]; // compute it as earlier
int ancestor(int s, int k); // returns the k-th ancestor of s
int lca(int s, int t) {

if (d[s] > d[t]) s = ancestor(s, d[s] - d[t]);
else t = ancestor(t, d[t] - d[s]);

int l = -1, r = n;
while (r - l > 1) {

int m = (l + r) / 2;
if (ancestor(s, m) == ancestor(t, m)) r = m;
else l = m;

}
return ancestor(s, r);

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 8 / 16



Ancestor Queries
Binary Lifting

1. Move up s or t such that they both are at the same depth.

2. If both are now equal, this is the LCA.

3. Binary search to find the largest k such that pk(s) ̸= pk(t).

4. Then pk+1(s) is the LCA.

int f[M][N], d[N]; // compute it as earlier
int ancestor(int s, int k); // returns the k-th ancestor of s
int lca(int s, int t) {

if (d[s] > d[t]) s = ancestor(s, d[s] - d[t]);
else t = ancestor(t, d[t] - d[s]);

if (s == t) return s;

for (int j = M - 1; j >= 0; --j) {
if (f[j][s] != f[j][t]) {

s = f[j][s];
t = f[j][t];

}
}
return f[0][s];

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 9 / 16



Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021



Ancestor Queries
Binary Lifting

1. Move up s or t such that they both are at the same depth.

2. If both are now equal, this is the LCA.

3. Binary search to find the largest k such that pk(s) ̸= pk(t).

4. Then pk+1(s) is the LCA.

int f[M][N], d[N]; // compute it as earlier
int ancestor(int s, int k); // returns the k-th ancestor of s
int lca(int s, int t) {

if (d[s] > d[t]) s = ancestor(s, d[s] - d[t]);
else t = ancestor(t, d[t] - d[s]);

if (s == t) return s;

for (int j = M - 1; j >= 0; --j) {
if (f[j][s] != f[j][t]) {

s = f[j][s];
t = f[j][t];

}
}
return f[0][s];

}

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 9 / 16



Tree DP

Problem

Given a tree T , find the longest path starting at u for all vertices u.

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 10 / 16



Tree DP

Problem

Given a tree T rooted at r , find the longest path starting at u in the subtree of u.

fr (u)
def
= longest path starting at u in the subtree of u if we root at r , and

Cr (u)
def
= set of children of u if we root the tree at r .

We get the relation,
fr (u) = max

v∈Cr (u)
(1 + fr (v)),

with fr (v) = 0 for a leaf v .

int f[N];
void dfs(int u, int p) {

f[u] = 0;
for (int v : g[u]) {

if (v == p)
continue;

dfs(v, u);
f[u] = max(f[u], 1 + f[v]);

}
}
dfs(r, r);

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 11 / 16



Tree DP

Problem

Given a tree T rooted at r , find the longest path starting at u in the subtree of u.

fr (u)
def
= longest path starting at u in the subtree of u if we root at r , and

Cr (u)
def
= set of children of u if we root the tree at r .

We get the relation,
fr (u) = max

v∈Cr (u)
(1 + fr (v)),

with fr (v) = 0 for a leaf v .

int f[N];
void dfs(int u, int p) {

f[u] = 0;
for (int v : g[u]) {

if (v == p)
continue;

dfs(v, u);
f[u] = max(f[u], 1 + f[v]);

}
}
dfs(r, r);

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 11 / 16



Tree DP

Problem

Given a tree T rooted at r , find the longest path starting at u in the subtree of u.

fr (u)
def
= longest path starting at u in the subtree of u if we root at r , and

Cr (u)
def
= set of children of u if we root the tree at r .

We get the relation,
fr (u) = max

v∈Cr (u)
(1 + fr (v)),

with fr (v) = 0 for a leaf v .

int f[N];
void dfs(int u, int p) {

f[u] = 0;
for (int v : g[u]) {

if (v == p)
continue;

dfs(v, u);
f[u] = max(f[u], 1 + f[v]);

}
}
dfs(r, r);

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 11 / 16



Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021



Tree DP

Problem

Given a tree T and a vertex u, find the longest path starting at u.

Let h(u) = longest path starting at u, we see that

h(u) = fu(u).

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 12 / 16



Tree DP
Rerooting

Problem

Given a tree T , find the longest path starting at u for all vertices u.

For v ∈ Cu(u), fv and fu are almost the same, for all x /∈ {u, v},

fv (x) = fu(x).

This happens because Cv and Cu are almost the same,

Cv (u) = Cu(x) for u /∈ {u, v},
Cv (u) = Cu(u) \ {v},
Cv (v) = Cu(v) ∪ {u}.

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 13 / 16



Tree DP
Rerooting

Problem

Given a tree T , find the longest path starting at u for all vertices u.

For v ∈ Cu(u), fv and fu are almost the same, for all x /∈ {u, v},

fv (x) = fu(x).

This happens because Cv and Cu are almost the same,

Cv (u) = Cu(x) for u /∈ {u, v},
Cv (u) = Cu(u) \ {v},
Cv (v) = Cu(v) ∪ {u}.

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 13 / 16



Tree DP
Rerooting

Problem

Given a tree T , find the longest path starting at u for all vertices u.

For v ∈ Cu(u), fv and fu are almost the same, for all x /∈ {u, v},

fv (x) = fu(x).

This happens because Cv and Cu are almost the same,

Cv (u) = Cu(x) for u /∈ {u, v},
Cv (u) = Cu(u) \ {v},
Cv (v) = Cu(v) ∪ {u}.

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 13 / 16



Tree DP
Rerooting

fv (x) = fu(x) for x /∈ {u, v},
Cv (u) = Cu(u) \ {v},
Cv (v) = Cu(v) ∪ {u}.

We only need to recompute fv (v) and fv (u),

fv (u) = max
x∈Cv (u)

(1 + fv (x))

= max
x∈Cu(u)\{v}

(1 + fv (x))

= max
x∈Cu(u)\{v}

(1 + fu(x)).

We consider two cases, if v = argmaxx∈Cu(u)
fu(x) or not, that is if fu(x) is maximized at v or not. (If there are

multiple values at which it is maximized, we arbitrarily pick one to be the argmax.)

1. If it is not the argmax,

fv (u) = max
x∈Cu(u)\{v}

(1 + fu(x)) = max
x∈Cu(u)

(1 + fu(x)) = fu(u).

2. If it is the argmax, this happens only once, so we can just recompute fv (u).

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 14 / 16



Tree DP
Rerooting

fv (x) = fu(x) for x /∈ {u, v},
Cv (u) = Cu(u) \ {v},
Cv (v) = Cu(v) ∪ {u}.

We only need to recompute fv (v) and fv (u),

fv (u) = max
x∈Cv (u)

(1 + fv (x))

= max
x∈Cu(u)\{v}

(1 + fv (x))

= max
x∈Cu(u)\{v}

(1 + fu(x)).

We consider two cases, if v = argmaxx∈Cu(u)
fu(x) or not, that is if fu(x) is maximized at v or not. (If there are

multiple values at which it is maximized, we arbitrarily pick one to be the argmax.)

1. If it is not the argmax,

fv (u) = max
x∈Cu(u)\{v}

(1 + fu(x)) = max
x∈Cu(u)

(1 + fu(x)) = fu(u).

2. If it is the argmax, this happens only once, so we can just recompute fv (u).

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 14 / 16



Tree DP
Rerooting

fv (x) = fu(x) for x /∈ {u, v},
Cv (u) = Cu(u) \ {v},
Cv (v) = Cu(v) ∪ {u}.

We only need to recompute fv (v) and fv (u),

fv (v) = max
x∈Cv (v)

(1 + fv (x))

= max
x∈Cu(v)∪{u}

(1 + fv (x))

= max(1 + fv (u), max
x∈Cu(v)

(1 + fv (x)))

= max(1 + fv (u), max
x∈Cu(v)

(1 + fu(x)))

= max(1 + fv (u), fu(v)).

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 15 / 16



Tree DP
Rerooting

int f[N], h[N];
void reroot(int u, int p) {

h[u] = f[u]; // at this step, f[x] stores fu(x)

int argmax = -1;
for (auto v : g[u])

if (f[u] == 1 + f[v])
argmax = v;

for (auto v : g[u]) {
if (v == p) continue;
int init_fv = f[v], init_fu = f[u];
if (argmax == v) {

f[u] = 0;
for (auto x : g[u])

if (x != v)
f[u] = max(f[u], 1 + f[x]);

}
f[v] = max(1 + f[u], f[v]); // now f stores fv
reroot(v, u);
f[v] = init_fv; f[u] = init_fu;

}
}
dfs(r, r); // this computes fr and stores it in f
reroot(r, r);

Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021 16 / 16



Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021



Rishabh Dhiman (ANCC, IITD) Tree Algorithms 6 December 2021


	Distance Queries
	Ancestor Queries
	Binary Lifting
	Tree DP
	Rerooting

