
Dynamic Programming

SOCP’21
ANCC, IIT-DELHI

Coin Problem
• Given infinite number of coins of denominations 2, 3 and 5, find the minimum

number coins needed to make an amount S.

• Example:

• S=14

• 14 = 2+2+2+2+2+2+2 (7 coins)

• 14 = 3+3+3+3+2 (5 coins)

• 14 = 5+5+2+2 (4 coins)

• It can be shown that we cannot do better than 4 coins.

Does naive greedy
approach work?

Recursion to the Rescue
• Notice that we can create amount S in any 3 of the following ways-

• 1) Take amount (S-2) and add a 2 coin.

• 2) Take amount (S-3) and add a 3 coin.

• 2) Take amount (S-5) and add a 5 coin.

minCoins(S)

1+ minCoins(S-2)

1+ minCoins(S-3)

1+ minCoins(S-5)Beware of corner
cases!

Take minimum
of these 3

values

Recursion Code

Tanishq Dubey

Time Complexity Analysis

• T(n) = T(n-2) + T(n-3) +T(n-5) + O(1) ===> T(n) ~ O(3^n)

We have ~n
levels and there
are ~3^n nodes

at level n

Exponential !!

Improving Time Complexity : Memoization
1. Notice that we are doing extra

work when we are computing
m(2), m(3) etc again and again.

2. Idea:

Somehow whenever we
calculate minCoins(k) for
the first time we should

“remember” it so we can
directly reuse that value

instead of calling the
recursive function again.

3. We can have an array called int
memory[n] initialised fully with -1, where
memory[k] will “remember” the value of

minCoins(k).

4. If the value of memory[k] is not -1 that means
we have already calculated minCoins(k) and we

don’t need to call the function.

Recursion +
Memoization Code

Notice that time complexity is now O(N) because
we spend O(1) time on each k thanks to

memoization technique. Space complexity will
also be O(N) for the memory[] array.

Thank you!

