
Greedy Algorithms
Lecture 3: Summer of Competitive Programming

Soumil Aggarwal

Algorithms and Coding Club
Indian Institute of Technology Delhi

3 July 2021

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 1 / 20

Greedy Algorithms - Introduction

You make choices which are locally optimal (according to
some heuristic), and try to prove that this produces a globally
optimal solution

Heuristic - A guiding principle which you think a solution to
the problem should follow. Often involves choosing an
element which is ’extreme’ (biggest/smallest/best/worst) in
some sense

Heuristics are the key to solving any problem greedily. All
magical solutions usually have some solid heuristics behind
them.

.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 2 / 20

Greedy Algorithms - Introduction

Can also involve the idea of local changes - can you make
small changes to the current configuration to move to a
’better’ neighbouring configuration (in a way, looking at the
’derivative’)

Local change - Any change which is ’small’ is some sense.
Example - Swapping two elements in an array of n numbers

Greedy algorithms are efficient because you only process small
chunks of information at each step. They don’t always work /
it can be hard to prove their correctness, due to the same
reason

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 3 / 20

Interval Scheduling

Let’s make some of this stuff a little more concrete by considering
the following classical example:

Problem

You are given a set of n tasks to be performed, along with the
starting and ending time for each task. You are supposed to
choose some k tasks so that the time intervals for no two tasks
intersect, and k is the maximum possible.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 4 / 20

Interval Scheduling
Example

Task 1 2 3 4 5 6

A

B

C

D

Here, note that choosing tasks A, C, and D gives us a valid
selection with k = 3. It is easy to check that k < 4, so we’re done.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 5 / 20

Interval Scheduling
Some definitions

Valid selection - Any selection of intervals that don’t intersect
with each other. We basically just need to find the largest
valid selection.

S - Set of intervals that have already been chosen (we assume
it to be a valid selection)

T - Set of intervals which aren’t in S , and also don’t intersect
with any interval in S . Basically, the set of intervals from
which you should pick the next interval.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 6 / 20

Interval Scheduling
Heuristic 1

Choose the smallest interval in T . Repeat until T becomes
empty.

Makes sense because smaller intervals should intersect with a
lesser number of other intervals, so we should be able to
select more intervals in this manner

It works for the original example we considered -

Task 1 2 3 4 5 6

A

B

C

D

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 7 / 20

Interval Scheduling
Heuristic 1

But it fails for the following set of tasks:

Task 1 2 3 4 5 6

A

B

C

The heuristic says you should choose B and go home. But we
could choose A and C and be happier. So we need to think of
something else.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 8 / 20

Interval Scheduling
Heuristic 2

In the counterexample to the last heuristic, we saw that small
intervals don’t really have to have less number of
intersections. So now we refine the strategy. We choose the
element of T which intersects with the least number of other
elements of T . Repeat until T is empty.

Note that at each step, the size of T is reduced as little as
possible locally.

This seems like a pretty evolved strategy, and works for both
the cases we’ve considered before.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 9 / 20

Interval Scheduling
Heuristic 2

However, the following example kills all hopes and dreams.
Adios.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 10 / 20

Interval Scheduling
Heuristic 2

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 11 / 20

Interval Scheduling
Heuristic 3

By now, we’ve realised that the number of intersections might
not be the right thing to consider. But ’reduce the size of T
as little as possible’ still seems like a useful idea. So we look
for some other way to do it.

We notice that we can order the elements of S according to
their position on the number line. More specifically, for an
interval I = (a, b), we define L(I) = a and R(I) = b. Then we
can order the elements of S as I1 < I2 < · · · < In, where
R(Ij) ≤ L(Ij+1) for 1 ≤ j < n.

What happens if you try to build up S so that you add I1 first,
I2 next, and so on?

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 12 / 20

Interval Scheduling
Heuristic 3

One thing to note is: If you’ve built S upto Im, then T can be
taken to be just the set of all intervals J which satisfy
L(J) ≥ R(Im).

So, how do we choose Im+1 so that the size of T is reduced as
little as possible?

We have the following heuristic - Choose Im+1 to be the
interval X in T such that R(X) is smallest.

We can check that this works for all the examples we’ve
considered so far.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 13 / 20

Interval Scheduling
Proof

We now try to prove that this strategy actually works, by trying to
reduce any optimal choice of intervals to our greedy choice.

Suppose the set U containing I1 < I2 < · · · < Ik is an optimal
choice of intervals.

We will change the above set of intervals to the set U
containing G1 < G2 < · · · < Gk , which will be chosen
according to our greedy strategy. We will do this by replacing
Ij by Gj one-by-one, going from j = 1 to j = k , and claiming
that U remains valid at each step. We prove all this works
using induction on j .

If S = φ, then T includes all the intervals. So, it is trivial to
see that G1 can replace I1, as R(G1) ≤ R(I1) by the definition
of G1.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 14 / 20

Interval Scheduling
Proof

Now, suppose U has become G1 < · · · < Gj < Ij+1 < · · · < Ik .
Then for S = {G1, . . . ,Gj}, T contains Ij+1, so T is
non-empty. So a valid choice of Gj+1 can be made, and
R(Gj+1) ≤ R(Ij+1) by definition, due to which U remains
valid on replacing Ij+1 by Gj+1. Hence our proof by induction
is complete.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 15 / 20

So we saw that:

The underlying mega heuristic was - reduce the size of T as
little as possible. But since we only optimised this locally, how
exactly we did it made the difference between failure and
success (heuristics 2 and 3). (On thinking deeply about it, we
see that the main difference that matters is - In heuristic 3,
suppose that on choosing interval A, T will become TA, and
on choosing interval B, T will become TB . Then either
TA ⊆ TB or TB ⊆ TA. Such a structure isn’t there in
heuristic 2, where we only consider the sizes of TA and TB .)

Proving that your greedy algorithm works is really important,
as a really solid-seeming heuristic can end up crashing and
burning for some case, and that will just lead to frustration
and loss of points.

It is important to come up with counterexamples. One way to
do it is challenging the underlying assumption of the heuristic,
and constructing test sets accordingly.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 16 / 20

Proof Strategies

Considering the optimal solution and trying to ’reduce’ it to
the greedy solution is a nice strategy, especially when
non-greedy optimal solutions also exist (just what we did in
the previous example).

Comparison with the optimal solution - This can also be
helpful when the only optimal solution is the greedy solution.
You compare an optimal solution A with the greedy solution
G , and prove that if A is different from G , you can make a
local change to A to strictly optimise it further, which would
be a contradiction.

Inequalities and monovariants related to the quantity we are
trying to optimise are often helpful. Induction and
contradiction are of course, ubiquitous.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 17 / 20

Another Example

We consider another, slightly different example:

Problem

You are given n real numbers a1 ≤ · · · ≤ an. Find x so that
f (x) =

∑n
i=1 |x − ai | is minimised.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 18 / 20

Another Example

For this problem, the idea of making small local changes is very
helpful. Specifically, we consider what happens to f (x) when we
change x to x + ε for a small ε > 0.

Let s(x) be the number of ai satisfying ai ≤ x , and l(x) be
the number of ai satisfying ai > x . Then note that f (x) will
change by (s(x)− l(x))ε.

Thus, you should increase x iff (s − l)(x) < 0, i.e. there are
more numbers in front of it than behind it.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 19 / 20

Another Example

(s − l)(−∞) = −n, (s − l)(∞) = n, (s − l) is a
non-decreasing integer function.

So, x must lie just beyond the region where (s − l)(x) < 0. x
will be the median of the sequence, i.e. x = a n+1

2
if n is odd,

and x ∈ [a n
2
, a n

2
+1] if n is even (x can take any value in the

interval). Basically, x must have as many values in front of it
as there are behind it.

Soumil Aggarwal (ANCC IITD) Greedy Algorithms 3 July 2021 20 / 20

	Greedy Algorithms - Introduction
	Interval Scheduling
	Example
	Some definitions
	Heuristic 1
	Heuristic 2
	Heuristic 3
	Proof

	Proof Strategies
	Another Example

