C++ - Standard Template
Library(STL)

SoCP - Lecture 2
== ALGORITHMS AND CODING CLUB IIT DELHI —
Tamajit banerjee and Himanshu Gaurav Singh

The power of C++ Generic Programming : Templates

<jiostream>
<string>
std;
template <typename T>
i & Max (T

a<b?b: a; Max (i, j): 39
e o Max(f1, f2): 20.7

int i = 39; Max(s1l, s2): World
int j = 20;
cout << "Max(i, j): " << Max(i, j) << endl;
double f1 = 13.5;
double 2 = 20.7;
cout << "Max(f1l, f2): " << Max(fl, f2) << endl;
string s1 = ""Hello";
string s2 = "World";
cout << "Max(sl, s2): " << Max(sl, s2) << endl;
9;

Good references for understanding STL

1. cppreference website
https://en.cppreference.com/w/

2. The C++ Standard Template Library Book by Nicolai
M. Josuttis

3. Codeforces Blogs

Note : The slides have been made using the information which we
got from these resources

https://en.cppreference.com/w/

The C++ Standard Template Library

The STL is based on the cooperation of various well-structured components, key of which are con-
tainers, 1terators, and algorithms:

o Containers are used to manage collections of objects of a certain kind. Every kind of container
has its own advantages and disadvantages, so having different container types reflects different
requirements for collections in programs. The containers may be implemented as arrays or as
linked lists, or they may have a special key for every element.

o Iterators are used to step through the elements of collections of objects. These collections may
be containers or subsets of containers. The major advantage of iterators is that they offer a
small but common interface for any arbitrary container type. For example, one operation of this
interface lets the iterator step to the next element in the collection. This is done independently
of the internal structure of the collection. Regardless of whether the collection is an array, a tree,
or a hash table, it works. This is because every container class provides its own iterator type that
simply “does the right thing” because it knows the internal structure of its container.

o Algorithms are used to process the elements of collections. For example, algorithms can search,
sort, modify, or simply use the elements for various purposes. Algorithms use iterators. Thus,
because the iterator interface for iterators is common for all container types, an algorithm has to
be written only once to work with arbitrary containers.

Container

Container

Container

Containers

Sequence Containers: Associative Containers: Unordered Containers:
Array: Set/Multiset: Unordered Set/Multiset:
Vector:
Deque:

- -

Map/Multimap: Unordered Map/Multimap:

List:
Forward-List: I—% : l I

S BB B P B P

Types of Containers

1. Sequence containers are ordered collections in which every element has a certain position. This
position depends on the time and place of the insertion, but it is independent of the value of
the element. For example, if you put six elements into an ordered collection by appending each
element at the end of the collection, these elements are in the exact order in which you put them.
The STL contains five predefined sequence container classes: array, vector, deque, 1list, and
forward_list.!

2. Associative containers are sorted collections in which the position of an element depends on its
value (or key, if it’s a key/value pair) due to a certain sorting criterion. If you put six elements into
a collection, their value determines their order. The order of insertion doesn’t matter. The STL
contains four predefined associative container classes: set, multiset, map, and multimap.

3. Unordered (associative) containers are unordered collections in which the position of an ele-
ment doesn’t matter. The only important question is whether a specific element is in such a
collection. Neither the order of insertion nor the value of the inserted element has an influ-
ence on the position of the element, and the position might change over the lifetime of the con-
tainer. Thus, if you put six elements into a collection, their order is undefined and might change
over time. The STL contains four predefined unordered container classes: unordered_set,
unordered_multiset, unordered_map, and unordered_multimap.

e Sequence containers are usually implemented as arrays or linked lists.
e Associative containers are usually implemented as binary trees.
e Unordered containers are usually implemented as hash tables.

Iterator

An iterator is an object that can iterate over elements (navigate from element to element). These
elements may be all or a subset of the elements of an STL container. An iterator represents a certain
position in a container. The following fundamental operations define the behavior of an iterator:

o Operator * returns the element of the current position. If the elements have members, you can
use operator -> to access those members directly from the iterator.

o (Operator ++ lets the iterator step forward to the next element. Most iterators also allow stepping
backward by using operator --.

o (perators == and ! = return whether two iterators represent the same position.
o Operator = assigns an iterator (the position of the element to which it refers).

Iterator Categories

Iterator Category Ability Providers

Output iterator Writes forward Ostream, inserter

Input iterator Reads forward once | Istream

Forward iterator Reads forward Forward list, unordered containers

Bidirectional iterator Reads forward and | List, set, multiset, map, multimap
backward

Random-access iterator | Reads with random | Array, vector, deque, string, C-style array
access

Iterator and Reverse lterator

vector<int>::iterator ptr;

begin () end ()

=

e value

Be Careful when incrementing by more than one element

for (pos = coll.begin(); pos < coll.end(); pos += 2) {
cout << *pos << ’ ’;

}

nn

Algorithms

The STL provides several standard algorithms for processing elements of collections.
These algorithms offer general fundamental services, such as searching, sorting,
copying, reordering, modifying, and numeric processing. Algorithms are not member
functions of the container classes but instead are global functions that operate with
iterators. This has an important advantage: Instead of each algorithm being
implemented for each container type, all are implemented only once for any container
type. The algorithm might even operate on elements of different container types. You
can also use the algorithms for user- defined container types. All in all, this concept
reduces the amount of code and increases the power and the flexibility of the library.

Nonmodifying Algorithms

ForwardIterator
min_ element (ForwardIterator beg, ForwardIterator end)

ForwardIterator
min_element (ForwardIterator beg, ForwardIterator end, CompFunc op)

ForwardIterator
max_element (ForwardIterator beg, ForwardIterator end)

ForwardIterator
max_element (ForwardIterator beg, ForwardIterator end, CompFunc op)

pair<ForwardIterator,ForwardIterator>
minmax_element (ForwardIterator beg, ForwardIterator end)

pair<ForwardIterator,ForwardIterator>
minmax_element (ForwardIterator beg, ForwardIterator end, CompFunc op)

e Complexity: linear (numElems—-1 comparisons or calls of op (), respectively, formin_element ()
and max_element () and % (numElems-1) comparisons or calls of op(), respectively, for

minmax_element ()).

function template
<numeric>
sta:accumulate

template <class InputIterator, class T>
T accumulate (InputIterator first, InputIterator last, T init);
template <class InputIterator, class T, class BinaryOperation>

T accumulate (InputlIterator first, InputIterator last, T init,
BinaryOperation binary op);

Accumulate values in range
Returns the result of accumulating all the values in the range [first,last) to init.

The default operation is to add the elements up, but a different operation can be specified as binary_op.

Assigning the Same Value M O difyin g Al g Orithms
void
fill (ForwardIterator beg, ForwardIterator end,

const T& newValue)

void
fill n (OutputIterator beg, Size num,
const T& newValue)
e fill() assigns newValue to each element in the range [beg,end).

e fill n() assigns newValue to the first num elements in the range starting with beg. If num is
negative, £i1l1l_n() does nothing (specified only since C++11).

e The caller must ensure that the destination range is big enough or that insert iterators are used.

e Since C++11, £i11_n() returns the position after the last modified element (beg+num) or beg if
num is negative (before C++11, £i11_n () had return type void).

e Complexity: linear (numElems, num, or O assignments).

fill(coll.begin(), coll. end Q, // destination
"again") ; // new value

bool
next permutation (BidirectionalIterator beg,BidirectionalIterator end)

bool

next permutation (BidirectionalIterator beg,BidirectionalIlterator end,
BinaryPredicate op)

bool

prev_permutation (BidirectionalIterator beg, BidirectionalIterator end)

bool
prev_permutation (BidirectionalIterator beg, Bidirectionallterator end,
BinaryPredicate op)

Complexity: linear (at most, numFElems/2 swaps).

Shuffling Elements

Shuffling Using the Random-Number Library

void
shuffle (RandomAccessIterator beg, RandomAccessIterator end,
UniformRandomNumberGenerator&& eng)

void
random_shuffle (RandomAccessIterator beg, RandomAccessIterator end)

void
random_shuffle (RandomAccessIterator beg, RandomAccessIterator end,
RandomFuncé&& op)
s

std::uniform_int_distribution
Defined in header <random>

template< class IntType = int >
class uniform int distribution;

(since C++11)

Produces random integer values %, uniformly distributed on the closed interval [a,, b], that is, distributed according to
the discrete probability function

(|aab) T +1

std::uniform_int distribution satisfies all requirements of RandomNumberDistribution

#include <random>
#include <iostream>

int main()
£

std: : random_device rd; //Will be used to obtain a seed for the random number engine

std::mt19937 gen(rd()). //Standard mersenne twister engine seeded with rd()
std: :uniform_int distribution<> distrib(1, 6):

for (int n=0; n<10; ++n)

//Use “distrib® to transform the random unsigned int generated by gen into an int il
std::cout << distrib(gen) << ' ';

r

std: :cout << '\n'

Sorting Algorithms

void
sort (RandomAccessIterator beg, RandomAccessIterator end)

void
sort (RandomAccessIterator beg, RandomAccessIterator end, BinaryPredicate op)

void
stable sort (RandomAccessIterator beg, RandomAccessIterator end)

void
stable sort (RandomAccessIterator beg, RandomAccessIterator end,
BinaryPredicate op)

Complexity:

— For sort (): n-log-n on average (approximately numElems*1og (numElems) comparisons
on average).

— For stable_sort (): n-log-n if there is enough extra memory (numElems*1og(numElems)
comparisons); otherwise, n-log-nxlog-n (numElems*1og (numElems)? comparisons).

The sorting criterion must define strict weak ordering, which is defined by the following four
properties:

1. It has to be antisymmetric.
This means that for operator <: If x < yis true, theny < xis false.
This means that for a predicate op(): If op(x,y) is true, then op(y,x) is false.

2. Ithas to be transitive.
This means that for operator <: If x < yistrueandy < zis true,thenx < zis true.
This means that for a predicate op(): If op(x,y) is true and op(y,z) is true, then op(x,z)
is true.

3. It has to be irreflexive.
This means that for operator <: x < xis always false.
This means that for a predicate op(): op(x,x) is always false.

4. Tt has to have transitivity of equivalence, which means roughly: If a is equivalent to b and b is
equivalent to c, then a is equivalent to c.
This means that for operator <: If ! (a<b) && !(b<a) is true and ! (b<c) && ! (c<b) is true
then ! (a<c) && !(c<a) is true.
This means that for a predicate op(): If op(a,b), op(b,a), op(b,c), and op(c,b) all yield
false, then op(a,c) and op(c,a) yield false.

S

Checking Whether One Element Is Present

bool
binary search (ForwardIterator beg, ForwardIterator end, const T& value)

bool
binary search (ForwardIterator beg, ForwardIterator end, const T& value,

BinaryPredicate op)

Searching First or Last Possible Position

ForwardIterator
lower bound (ForwardIterator beg, ForwardIterator end, const T& value)

ForwardIterator
lower bound (ForwardIterator beg, ForwardIterator end, const T& value,

BinaryPredicate op)

ForwardIterator
upper bound (ForwardIterator beg, ForwardIterator end, const T& value)

ForwardIterator
upper bound (ForwardIterator beg, ForwardIterator end, const T& value,
BinaryPredicate op)

Stacks

top ()

stack

‘ Poj()
push ()

t top ()

stack

push_back()

:

back()

|

pop_back()

}

pop ()

push ()

container (deque)

Queues

back()t

t front ()

push(i

queue

pop ()

S

back () front ()

push (push_back() queue pop_front() pop ()
4 l back() front() T #

: !

container (deque)

