Sorting & Divide and Conquer

ANCC, IITD

June 2021

ANCC, IITD Sorting & Divide and Conquer



Formal Definition

Sorting is a technique which is used to permute an array A such that for a given (total
order) relation R and any two indices i, j where i < j, A[i] <r A[j].

Simpler Explanation

Sorting is used to rearrange the array such that all elements are arranged in an ordered
fashion. The ordering can be a simple increasing/decreasing one or it can also be
something relatively more complicated.

ANCC, IITD Sorting & Divide and Conquer



Sorting Algorithms

Overview

There are a lot of sorting algorithms, with varying time complexities ranging from
O(n - log(n)) to O(n!). We will discuss in brief about two of the common and fast
sorting algorithms.

This algorithm uses a divide and conquer strategy:

@ Split the array A into two (almost) equal halves - B = A[/... mid] and
C = A[mid + 1...r], where mid = (I + r)/2 (initially / =0 and r = n).

@ Merge Sort these two arrays B and C.
© Now merge these two arrays to get the final sorted array A.

Time complexity: Since the array is split into two halves at every steps, we will have
log(n) levels of the recursion and on each level we perform O(n) operations. Hence to
total complexity is O(n - log(n)).

ANCC, IITD Sorting & Divide and Conquer



Merge Sort - Recursion Tree

ANCC, IITD Sorting & Divide and Conquer



Quick Sort

Quick Sort
This algorithm also uses a different kind of divide and conquer strategy:
@ Choose any element, e of the array A as a pivot.
@ Partition the array into two arrays B and C such that all elements in B are < e
and all elements in C are > e.
© Quick sort the two arrays B and C.

Time complexity: In the worst case, the partitions can divided unequally as n — 1 and
1. Making the partition takes O(n) and this would lead to a total time complexity of

O(n?). However, in general, the quick sort algorithm has an average running time of

O(n - log(n)) since on an average the array is partitioned into two equal halves.

ANCC, IITD Sorting & Divide and Conquer



Divide and Conquer

Divide and conquer is a technique which is used to divide the given problem into
subparts, solve the problem independently for those two halves and then combine
(conquer) the obtained solutions for each subpart to find the final result.

Recursive implementations are usually intuitive when thinking of a divide and conquer
strategy since solving the subproblem is the same as solving another problem on a
different input. The basic recursive algorithm would look like -
function divideAndConquer (problem) :
solutions = []
for subProblem in problem:
solution = divideAndConquer (subProblem)
solutions.add(solution)
conquer (solutions) // find the actual solution for the current problem

ANCC, IITD Sorting & Divide and Conquer



